

CO-OPERATIVE ROBOTICS SIMULATOR

 3D VIEWER

By

ARUN PRAKASH GANESAN

B. E, Bharathiar University, India, 2002

A REPORT

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2004

Approved by:

Major Professor
Scott A Deloach, Ph.D

ABSTRACT

This project describes the design and implementation of a Viewer, which is used to view

the simulation of robots in an environment. The viewer is a part of the Cooperative

Robotics Simulator project, where in simulations of many heterogeneous types of robots

are performed, all working within a single, virtual environment.

 The viewer uses the Java 3D API to graphically simulate the interaction among robots in

a given environment. The viewer is designed to run independent of the platform and on

multiple machines. The Viewer has “Record” and “Replay” options in order to save a

scenario as a script file and replay the scenario to study the behavior or robots.

 i

TABLE OF CONTENTS

LIST OF FIGURES……...……………………………………………………………...iv

LIST OF TABLES……...………………………………………………………………..v

ACKNOWLEDGEMENT…...…………………………………………………………vi

Chapter 1: Introduction ... 1

1.1 Introduction... 1

1.2 Background of the Cooperative Robotics Simulator..................................... 1

1.2.1 Components Co-operative Robotics Simulator...................................... 2

1.2.1.1 Cooperative Robotics Simulator 3D Viewer (CRS3D Viewer)......... 2

1.2.1.2 Environment Model Building tool... 3

1.2.1.3 Robot Simulator .. 3

1.2.1.2.1 Robots.. 3

1.2.1.2.2 Sensors .. 3

1.2.1.2.3 Actuators (Effectors) ... 4

1.2.1.4 Environment Simulator.. 4

1.2.1.5 Environment Control Panel (ECP) ... 5

1.3 Sequence Diagram of the Cooperative Robotics Simulator.......................... 5

1.4 Requirement of the CRS3D Viewer .. 6

1.5 Java 3D... 6

1.5.1 SimpleUniverse... 7

1.5.2 GraphicsConfiguration.. 8

1.5.3 Canvas... 8

1.5.4 View... 8

1.5.5 ViewingPlatform .. 9

1.5.6 BoundingSphere... 9

1.5.7 DirectionalLight ... 9

1.5.8 AmbientLight ... 9

1.5.9 Transform3D.. 10

1.5.10 TransformGroup.. 10

1.5.11 Primitive.. 10

 ii

1.5.11.1 Box.. 10

1.5.11.2 Cylinder ... 10

1.5.11.3 Sphere... 11

1.5.12 Appearance... 11

1.5.12.1 Material.. 11

1.5.13 Vector3d.. 12

1.5.14 OrbitBehavior .. 12

Chapter 2: Design of the CRS3D Viewer.. 13

2.1 Class Diagram ... 13

2.1.1 High Level Class Diagram of CRS3D Viewer 13

2.1.2 Components of the class diagram... 14

2.1.2.1 Viewer Object.. 14

2.1.2.2 CRS3DViewer class .. 15

The following section illustrates the methods and attributes used in the

CRS3DViewer

2.1.2.2.1 setInitialGraphicParameters().. 17

2.1.2.2.2 setLightParameters() ... 17

2.1.2.2.3 setOrbitParameters()... 17

2.1.2.2.4 drawObjects()... 17

2.1.2.2.5 setShape().. 17

2.1.2.2.6 getAppearance() ... 18

2.1.2.2.7 connect().. 18

2.1.2.2.8 connectclose().. 18

2.1.2.2.9 setFrame()... 18

2.1.2.2.10 showFrame()... 18

2.1.2.3 CRS3DViewer, CheckerFloor, ColouredTiles 19

The following section illustrates the association between the CRS3DViewer

class,

Figure 7, shows the association between the classes. 19

2.1.2.3 CRS3DViewer, ViewerUpdateLocation.. 20

2.1.2.3 CRS3DReplay.. 22

 iii

2.2 Use Case Diagram... 23

2.3 Sequence Diagram representing interaction between the CRS3DViewer,

 Chapter 3: Evaluation .. 27

Chapter 4: Conclusion.. 31

Chapter 5: Future Work .. 32

5.1 Mouse Behaviors in Java 3D.. 32

5.2 Picking in Java 3D .. 32

5.3 Collision Detection using Java 3D ... 32

5.4 Representing Composite Objects and Sounds.. 33

References.. 35

Appendix.. 36

User Manual .. 36

 iv

LIST OF FIGURES

Figure 1: Architecture of Cooperative Robotics Simulator.. 2

Figure 2: Sequence Diagram of Cooperative Robotics Simulator................................ 5

Figure 3: Java API Hierarchy ... 7

Figure 4: High Level Class Diagram of CRS3D Viewer ... 13

Figure 5: ViewerObject class ... 15

Figure 7: Association between CRS3DViewer and ColouredTiles, CheckerFloor... 19

Figure 8: ViewerUpdateLocation .. 20

Figure 9: Protocol between Environment and Viewer .. 21

Figure 10: CRS3DReplay ... 22

Figure 11: Use Case Diagram for CRS3DViewer .. 23

Figure 13: CRS3D Viewer, Requirements.. 31

Figure 14: Collision detection in Java 3D... 33

Figure 15: Complex Spline... 34

Figure 16: Environment Control Panel (SnapShot) .. 36

Figure 17: CRS3D Viewer (SnapShot).. 37

Figure 18: CRS3D Viewer (SnapShot).. 38

Figure 19: CRS3D Viewer (SnapShot).. 39

Figure 20: CRS3D Viewer (SnapShot).. 40

 v

LIST OF TABLES

Table 1: Use Case Template for CRS3DViewer... 24

Table 2: Comparison of VRML vs. Java 3D .. 27

Table 3: Test Case 1.. 29

Table 4: Test Case 2.. 30

 vi

ACKNOWLEDEMENT

This project is one of the most significant accomplishments in my academic career. I owe

all my success to my mentors Dr.Scott A. Deloach, Dr. David A. Gustafson, Dr. Bill

Hankley who have guided me towards this accomplishment.

I also would like to thank my project members who coordinated with me and have played

a major role in making this project a success. I would like to specially thank Esteban

Guillen, Scott Joseph Harmon, Aaron Chavez and Venkata Prashant Rapaka for being

with me during the development of various phases of this project and providing me with

the valuable guidance.

 1

Chapter 1: Introduction

1.1 Introduction

This project describes the design and implementation of a Viewer, which is used to view

the simulation of robots in an environment. The viewer is a part of the Cooperative

Robotics Simulator project, where in simulations of many heterogeneous types of robots

are performed, all working within a single, virtual environment.

The viewer uses the Java 3D API to graphically simulate the interaction among robots in

a given environment. It is designed to run independent of the platform and on multiple

machines. The Viewer has “Record” and “Replay” options in order to save a scenario as a

script file and replay the scenario to study the behavior of robots.

The viewer allows the user to view the environment from different camera positions and

helps the user to zoom-in and zoom-out of the view.

1.2 Background of the Cooperative Robotics Simulator

The Cooperative Robotics Simulator can be used to perform simulations of many (one or

more) heterogeneous types of robots all working within a single, virtual environment.

The following section illustrates the components of the Cooperative Robotics Simulator

project and the Java 3D API’s used in developing the viewer and the requirements of the

Cooperative Robotics Simulator Viewer.

 2

1.2.1 Components Co-operative Robotics Simulator

Robot Control
Code

Robot Hardware
Simulator

Hardware SimulatorAPI

Environment Simulator

Robot
Simulator

Environment
Control Panel

Sim
Controller

Communications
Controller

Environment
Building Tool

Environment
Designer

Environment
Controller

Environment
Model

3D Viewer
User

Figure 1: Architecture of Cooperative Robotics Simulator

1.2.1.1 Cooperative Robotics Simulator 3D Viewer (CRS3D Viewer)

The Cooperative Robotics Simulator 3D Viewer (CRS3D Viewer) is a viewer to view the

simulations in Cooperative Robotics Simulator environment. It is developed to run on a

multi platform environment. Multiple instances of the viewer can be run on different

machines.

This project describes the design and implementation of the viewer. The viewer is

developed using the standard Java 3D API’s. The viewer can be used to view the

environment from different camera positions. Mouse zoom-in and zoom-out features are

also provided to view the environment from different positions. The CRS3D Viewer can

also be used to record a scenario and store the scenario as a script for later viewing.

 3

1.2.1.2 Environment Model Building tool

The Environment Model Building is an independent tool used to create Virtual

environments and robots for studying the interaction between robots. The Environment

Model Building is developed using Java and Java 3D and generates an XML file which is

used by the Environment Simulator to initialize the environment.

1.2.1.3 Robot Simulator

The following section illustrates the components in a Robot Simulator. A Robot

Simulator simulates the working of the Scout Robot. The Robot Simulator consists of the

following components:

1.2.1.2.1 Robots – The Robot Simulator consists of three parts: a robot hardware

simulator, a robot control program, which is supplied by the user, and an environment-

based robot object. A standard API is defined between the robot control program and the

robot hardware simulator. This API allows robot control programs to work with various

robot hardware simulators. Robot hardware simulators will be defined by the set of

standard sensors and actuators that they contain.

The robot hardware simulator interfaces with the environment via requests for data from

its sensors or requests for action from its actuators. The environment-based robots are

responsible for controlling the individual sensors, based on robot hardware simulator

requests, and providing the appropriate data to the sensors for feedback to the robot

hardware simulator.

1.2.1.2.2 Sensors – There are separate sensor models for each hardware sensor available

to a robot hardware simulator. Sensor models include sonar’s, bump sensors, and heat

sensors. The sensors will be coded to take data from the environment model and return

that data as interpreted by the sensor.

 4

For instance, a sonar sensor model takes inputs such as current location, orientation, and

environment model data and would output a value related to the distance of the closest

object in its view.

1.2.1.2.3 Actuators (Effectors) – There are actuator models for each hardware actuator

available on a real robot. Possible actuators are movement actuators, motors, grippers,

arms, etc. The actuator models take actuator requests from robot hardware simulators

and, based on environment model data and degradation parameters, provide the actual

effect on the environment. This output is used to update the environment.

1.2.1.4 Environment Simulator

The Environment Simulator (ES) is the central component in the system. The

environment simulator is responsible for keeping track of the actual state of the

environment, including each robot.

The Environment Simulator receives the co-ordinates from the Environment Model

Building tool and updates the CRS3DViewer with the co-ordinates.

The Environment Simulator receives requests from simulated robots to read sensors,

initiate actuators, and to send and receive communications. The environment will provide

sensor data to simulated robots by passing requests to the appropriate environment-based

robot object, which uses sensor models that transform environment model information

into the appropriate sensor output data.

The environment updates the environment model by taking requests from simulated

robots to perform actions on the environment via environment robot actuators. Again, the

Environment simulator determines the effect on the environment model using the output

of actuator models. The environment is also responsible for handling message passing

between robot simulators. The environment simulator will take requests to send messages

to other robot simulators and pass them to the correct robot simulator with the appropriate

 5

delay. The Environment Simulator will also control degradation of robots in terms of

sensors and actuator capabilities.

1.2.1.5 Environment Control Panel (ECP)

The Environment Control Panel (ECP) will be a standalone system that connects to the

ES to monitor and control the current simulation. Specifically, the Environment Control

Panel is capable of starting up the CRS3D viewer to view the simulations in the

environment.

The Environment Control Panel also monitors all communications and is capable of

shutting down all or some communications. The control panel will also allow the user to

select and monitor/change the status of individual robots within the environment.

1.3 Sequence Diagram of the Cooperative Robotics Simulator

This section illustrates the sequence diagram of the Cooperative Robotics Simulator.

Figure 2, shows the interaction between the various components of the Cooperative

Figure 2: Sequence Diagram of Cooperative Robotics Simulator

 6

Robotics Simulator. The interaction among the various components occurs as follows:

The user starts up the Environment Control Panel. The Environment Control Panel in turn

starts the Environment Simulator, Robot Simulator and CRS3D Viewer. The Robot

Simulator sends the sensor information to the Environment Simulator at regular intervals.

The Environment Simulator specifies the moves instructions and conveys the robot

simulator and the robot makes the corresponding moves. The Environment Simulator also

sends the translated parameters to the CRS3D Viewer.

1.4 Requirement of the CRS3D Viewer

The CRS3D Viewer is to be able to draw the environment generated by the Environment

Model Building tool. It should also be able to show the changes in the environment on a

real time basis. The user must be able to zoom-in and zoom-out to get the desired view.

The user should also be able to view the environment from different camera angles.

The viewer also should be capable enough of running on any platform, with minimal

memory usage. The viewer should also be designed to run on multiple machines at the

same time.

1.5 Java 3D

Java 3D is used to meet the requirement of the CRS3D Viewer. Java 3D is built on Java

API. Java 3D is a full-featured 3D graphics API. It employs a scene-graph programming

model in which the application program describes a scene. Taking into consideration the

requirements of platform independence, multiple threading, distributed rendering and

device independent hardware usage Java 3D is a suitable development language.

Figure 3, illustrates the API hierarchy used to create the scene graph. The API hierarchy

follows a tree structure. The arrows represent the sequence of compilation.

 7

Figure 3: Java API Hierarchy

The API’s [1] used in the viewer include:

1.5.1 SimpleUniverse

This class sets up a minimal user environment to quickly and easily get a Java 3D

program up and running. This utility class creates all the necessary objects on the "view"

side of the scene graph. Specifically, this class creates a locale, a single ViewingPlatform,

and a Viewer object (both with their default values). Many basic Java 3D applications

will find that SimpleUniverse provides all necessary functionality needed by their

applications. More sophisticated applications may find that they need more control in

order to get extra functionality and will not be able to use this class.

 8

1.5.2 GraphicsConfiguration

The GraphicsConfiguration class describes the characteristics of a graphics destination

such as a printer or monitor. There can be many GraphicsConfiguration objects

associated with a single graphics device, representing different drawing modes or

capabilities. The corresponding native structure will vary from platform to platform.

1.5.3 Canvas

The Canvas3D class provides a drawing canvas for 3D rendering. It is used either for on-

screen rendering or off-screen rendering. Canvas3D is an extension of the AWT Canvas

class that users may further subclass to implement additional functionality.

The Canvas3D object extends the Canvas object to include 3D-related information such

as the size of the canvas in pixels, the Canvas3D's location, also in pixels, within a

Screen3D object, and whether or not the canvas has stereo enabled.

Because all Canvas3D objects contain a reference to a Screen3D object and because

Screen3D objects define the size of a pixel in physical units, Java 3D can convert a

Canvas3D size in pixels to a physical world size in meters. It can also determine the

Canvas3D's position and orientation in the physical world.

1.5.4 View

The View object contains all parameters needed in rendering a three dimensional scene

from one viewpoint. A view contains a list of Canvas3D objects that the view is rendered

into. It exists outside of the scene graph, but attaches to a ViewPlatform leaf node object

in the scene graph.

The View object is the main Java 3D object for controlling the Java 3D viewing model.

All of the components that specify the view transform used to render to the 3D canvases

 9

are either contained in the View object or in objects that are referenced by the View

object.

1.5.5 ViewingPlatform

This class is used to set up the "view" side of a Java 3D scene graph. The

ViewingPlatform object contains a MultiTransformGroup node to allow for a series of

transforms to be linked together. To this structure the ViewPlatform is added as well as

any geometry to associate with this view platform.

1.5.6 BoundingSphere

This class defines a spherical bounding region which is defined by a center point and a

radius.

1.5.7 DirectionalLight

A DirectionalLight node defines an oriented light with an origin at infinity. It has the

same attributes as a Light node, with the addition of a directional vector to specify the

direction in which the light shines. A directional light has parallel light rays that travel in

one direction along the specified vector. Directional light contributes to diffuse and

specular reflections, which in turn depend on the orientation of an object's surface but not

its position. A directional light does not contribute to ambient reflections.

1.5.8 AmbientLight

An ambient light source object. Ambient light is that light that seems to come from all

directions. The AmbientLight object has the same attributes as a Light node, including

color, influencing bounds, scopes, and a flag indicating whether this light source is on or

off. Ambient reflections do not depend on the orientation or position of a surface.

Ambient light has only an ambient reflection component. It does not have diffuse or

specular reflection components.

 10

1.5.9 Transform3D

A generalized transform object represented internally as a 4x4 double-precision floating

point matrix. The mathematical representation is row major, as in traditional matrix

mathematics. A Transform3D is used to perform translations, rotations, and scaling and

shear effects. The matrix represents a spatial orientation of object in 3D space.

A transform has an associated type, and all type classification is left to the Transform3D

object. A transform will typically have multiple types, unless it is a general,

unclassifiable matrix, in which case it won't be assigned a type.

The Transform3D type is internally computed when the transform object is constructed

and updated any time it is modified.

1.5.10 TransformGroup

TransformGroup is a Group node that contains a transform. The TransformGroup node

specifies a single spatial transformation, via a Transform3D object, that can position,

orient, and scale all of its children.

1.5.11 Primitive

1.5.11.1 Box

Box is a geometry primitive created with a given length, width, and height. It is centered

at the origin. By default, it lies within the bounding box, [-1,-1,-1] and [1, 1, 1].

1.5.11.2 Cylinder

Cylinder is a geometry primitive defined with a radius and a height. It is a capped

cylinder centered at the origin with its central axis aligned along the Y-axis.

When a texture is applied to a cylinder, the texture is applied to the caps and the body

different. A texture is mapped CCW from the back of the body. The top and bottom caps

 11

are mapped such that the texture appears front facing when the caps are rotated 90

degrees toward the viewer.

1.5.11.3 Sphere

Sphere is a geometry primitive created with a given radius and resolution. It is centered at
the origin.

When a texture is applied to a Sphere, it is mapped CCW from the back of the sphere.

1.5.12 Appearance

The Appearance object defines all rendering state that can be set as a component object

of a Shape3D node. The rendering state consists of the following:

Coloring attributes - defines attributes used in color selection and shading. These

attributes are defined in a ColoringAttributes object.

1.5.12.1 Material

The Material [2] object defines the appearance of an object under illumination. If the

Material object in an Appearance object is null, lighting is disabled for all nodes that

use that Appearance object.

The properties that can be set for a Material object are:

Ambient color - the ambient RGB color reflected off the surface of the material. The

range of values is 0.0 to 1.0. The default ambient color is (0.2, 0.2, 0.2).

• Diffuse color - the RGB color of the material when illuminated. The range of

values is 0.0 to 1.0. The default diffuse color is (1.0, 1.0, 1.0).

• Specular color - the RGB specular color of the material (highlights). The

range of values is 0.0 to 1.0. The default specular color is (1.0, 1.0, 1.0).

• Emissive color - the RGB color of the light the material emits, if any. The

range of values is 0.0 to 1.0. The default emissive color is (0.0, 0.0, 0.0).

• Shininess - the material's shininess, in the range [1.0, 128.0] with 1.0 being

not shiny and 128.0 being very shiny. Values outside this range are clamped.

The default value for the material's shininess is 64.

 12

The Material object also enables or disables lighting.

1.5.13 Vector3d

A 3-element vector that is represented by double-precision floating point x, y, z

coordinates.

1.5.14 OrbitBehavior

OrbitBehavior [3]moves the View around a point of interest when the mouse is dragged

with a mouse button pressed. It includes rotation, zoom, and translation actions.

This behavior must be added to the ViewingPlatform using the

ViewingPlatform.setViewPlatformBehavior method.

The rotate action rotates the ViewPlatform around the point of interest when the mouse is

moved with the main mouse button pressed. The rotation is in the direction of the mouse

movement, with a default rotation of 0.01 radians for each pixel of mouse movement.

The zoom action moves the ViewPlatform closer to or further from the point of interest

when the mouse is moved with the middle mouse button pressed (or Alt-main mouse

button on systems without a middle mouse button). The default zoom action is to

translate the ViewPlatform 0.01 units for each pixel of mouse movement.

 13

Chapter 2: Design of the CRS3D Viewer

2.1 Class Diagram

2.1.1 High Level Class Diagram of CRS3D Viewer

The following section illustrates the class diagram of the Cooperative Robotics Simulator

Viewer. The class diagram also depicts the relationship between the classes. Figure 4,

shows the high level class diagram of the Cooperative Robotics Simulator Viewer.

Figure 4: High Level Class Diagram of CRS3D Viewer

The classes involved include ViewerObject, ViewerUpdateLocation, CheckerFloor,

ColouredTiles, ViewerSphere, ViewerCylinder and ViewerBox.

The ViewerObject class provides the initial objects and their parameters and their

corresponding coordinates in the environment for the CRS3DViewer class to draw the

initial environment.

 14

The ColoredTiles and CheckerFloor classes draw a floor in the Viewer on which all the

objects are placed.

The ViewerUpdateLocation class provides the viewer with the updated parameters for the

translation of robots in the environment.

There exists a one to one relationship between the CRS3DViewer class and the

ColoredTiles and CheckerFloor class. There exists a one to many relationship between

the CRS3DViewer class and the ViewerObject class which is a part of the Environment

Simulator. The CRS3DViewer connects to the Environment Simulator to draw a list of

objects on the viewer.

There exists a one to many relationship between the CRS3DViewer class and the

ViewerUpdateLocation class. The ViewerUpdateLocation class provides the

CRS3DViewer class with the updates of the location of the objects.

2.1.2 Components of the class diagram

2.1.2.1 Viewer Object

The following section illustrates the association of the ViewerObject class with its

subclass namely ViewerSphere, ViewerBox, ViewerCylinder. The latter classes are

derived from the former class which is the base class. Figure 5, shows the relationship

between the ViewerObject class and its derived classes.

 15

Figure 5: ViewerObject class

The ViewerObject class is the super class which is extended by 3 base classes namely

ViewerBox, ViewerSphere and ViewerCylinder. Each of these classes represents the features of

the box, sphere and cylinder respectively. ViewerObject is invoked by CRS3DViewer to pass on

the initial environment co-ordinates to the Environment viewer. The ViewerBox class specifies

the height, length and width attributes of the Box. The ViewerSphere class specifies the radius of

the Sphere and the ViewerCylinder class specifies the height and radius of the cylinder.

The 3 base classes extend the main class which includes attributes which depict the

position, rotation, type and name of the object being initialized in the viewer. The

attributes depicting the position include xpos, ypos , zpos. The ViewerObject class also

specifies the color of the object.

2.1.2.2 CRS3DViewer class

The following section illustrates the methods and attributes used in the CRS3DViewer

class. Figure 6, depicts the attributes and methods in the CRS3DViewer class.

 16

Figure 6: CRS3DViewer class

 17

The CRS3DViewer class includes the following methods:

2.1.2.2.1 setInitialGraphicParameters()
 The GraphicsConfiguration, SimpleUniverse and Canvas3D classes are initialized in this

method. These methods are responsible for rendering the Java3D objects in the screen.

 It also initializes the BranchGroup and TransformGroup instances in order to add various

geometrical objects, light sources, appearances of objects on screen.

 2.1.2.2.2 setLightParameters()

The BoundingSphere, AmbientLight and DirectionalLight parameters are set in the

following method. Each of these parameters to attached to the BranchGroup object.

 2.1.2.2.3 setOrbitParameters()

OrbitBehavior parameters are initialized here to enable mouse zoom in and zoom out. It

also initializes the ViewingPlatform and View parameters to enable clipping Distance, so

that mouse zoom out takes place without much of the scene being clipped.

It also specifies, the location of the camera by specifying the location of the camera and

angle and point to which the camera is focusing on.

 2.1.2.2.4 drawObjects()

The CRS3D Viewer connects to the Environment Simulator to draw the initial objects

and environment on the screen. The co-ordinates are also written to a stream to enable

Replay options to study the behavior of robots.

 2.1.2.2.5 setShape()

This method draws the objects, places it in their respective positions and sets an

appearance color to each of them. The orientation, rotation and position of the objects are

 18

initialized here using the Vector3d and Translate Classes. These objects are then included

in the TransformGroup, which are in turn included in the BranchGroup.

 2.1.2.2.6 getAppearance()

The following method sets the Material Color of the objects. The material color of the

object specifies the color of the object during illumination.

 2.1.2.2.7 connect()

The connect method specifies the connection parameters to the Environment Simulator.

The viewer can be allowed to run on multiple machines independent of the platform the

machines use.

 2.1.2.2.8 connectclose()

This method indicates the close of the connection.

 2.1.2.2.9 setFrame()

This frame initializes the frame. It also adds panels to the frame. The panels specify the

canvas3D, combobox and Record, Replay buttons.

 2.1.2.2.10 showFrame()

 The floors are added to the BranchGroup and the instance of BranchGroup specified is

compiled to render the objects on the screen.

 19

2.1.2.3 CRS3DViewer, CheckerFloor, ColouredTiles

The following section illustrates the association between the CRS3DViewer class, the

CheckerFloor class and the ColouredTiles class.

Figure 7, shows the association between the classes. ColouredTiles, CheckerFloor classes

are called from the CRS3DViewer’s constructor method. It initializes the floor in the

CRS3D Viewer with tiles in the form of a checker board. It also marks the tiles with their

co-ordinate positions.

The getBG() in CheckerFloor class, adds the tiles generated by the ColouredTiles class to

the branchgroup.

Figure 7: Association between CRS3DViewer and ColouredTiles, CheckerFloor

When the branchgroup in the CRS3DViewer class is compiled it generated the floor and

the tiles in the viewer.

 20

2.1.2.3 CRS3DViewer, ViewerUpdateLocation

The following section illustrates the interaction of ViewerUpdateLocation class of

Environment with CRS3DViewer. Figure 8 depicts the high level association of the two

classes.

Figure 8: ViewerUpdateLocation

 21

Figure 9: Protocol between Environment and Viewer

Figure 9, gives a detailed description of the attributes and methods involved during the

translation of objects. The ViewerObject class interacts with the CRS3DViewer to draw

the initial objects in the environment generated by the Environment Model Building

Tool. The ViewerUpdateLocation class specifies the Object Name to be translated and

the position it has to be translated to. The CRS3DViewer class interacts with the

ViewerObject class by means of the drawObjects(). When the initial objects are created

in the viewer, the objects are stored by means of a name which has a value in the

Hashtable.

 22

The ViewerUpdateLocation class passes the name of the object and the translation

parameters and the CRS3DViewer class refers to the Hashtable to get the id of the object

to be translated.

2.1.2.3 CRS3DReplay

The following section illustrates the class diagram of the CRS3DReplay class. Figure 10

depicts the attributes and methods in use during the replay.

Figure 10: CRS3DReplay

 23

The CRS3DReplay class gets the data from the script file generated during the

simulation. It reads the data as a stream using the DataInputStream class and shows the

translation. The methods and attributes used in the CRS3DReplay class are similar to that

used in CRS3DViewer.

The scenario script is written whenever the user intends to view the replay the simulation

and generates a script file by recording the simulation.

2.2 Use Case Diagram

Figure 11: Use Case Diagram for CRS3DViewer

Figure 9, shows the Use Case diagram for the CRS3D Viewer. The User is the actor and

the Environment Control Panel, the robot simulator, the environment simulator and the

CRS3DViewer are the use cases.

The CRS3DViewer is started by the Environment Control Panel, which also starts up the

Robot Simulator and the Environment Simulator. The Robot Simulator provides the

 24

updates about the targets through the heat sensors and bump sensors and the Environment

Simulator correspondingly issues commands for the movement of the robot and

simultaneously sends the coordinates to the Viewer to show the translation. The Use case

template of the CRS3DViewer is show below, it describes in detail the capabilities and

interaction of the CRS3DViewer.

Table 1: Use Case Template for CRS3DViewer

Use Case Template

Name CRS3D Viewer

Description CRS3D Viewer is used to view the simulations in the

environment of the Cooperative Robotics Simulator

Actors User

Include None

Extends None

Pre-conditions The Environment Simulator should be started

Details 1. The user starts up the environment control panel

2. The environment control panel is used to start up the

Robot Simulator, Environment Simulator and the CRS3D

Viewer

3. Robot simulator sends the target information by keeping

track of it through the bump and heat sensors to the

Environment Simulator.

4. The Environment Simulator issues commands for the

movement of the robot and notifies the Viewer about the

change in the coordinates of a particular object.

Post-conditions None

Exceptions None

Constraints None

Variants None

Comments CRS3DViewer flushes the parameters of translation into a file to

enable replay.

 25

2.3 Sequence Diagram representing interaction between the
CRS3DViewer, Environment Control Panel and CRS3DReplay.

Figure 12: Sequence diagram representing interaction of CRS3DViewer class with

Environment Simulator class

 26

The user on instantiation of the CRS3DViewer invokes the setinitialGraphicsParameter()

method, which initializes the SimpleUniverse, Canvas3D, GraphicsConfiguration

parameters to show up the objects on the screen.

The setFrame() method initializes the window in which the Canvas3D is embedded.

The setLightParameters() method initializes the light source to view objects in the

universe. The light parameters are attached to the branchgroup. The setOrbitParameters()

method initializes the mouse behavior for zoom-in and zoom-out of the viewer.

The drawObjects method initializes the viewer by getting the objects from the

Environment Control Panel. It also simultaneously flushes the objects and their

coordinates along with their parameters on to a DataOutputStream which is written to a

file at regular intervals in order to enable replay.

The showFrame() method displays the window on the screen.

The translateObject() method gets the updates from the environment control Panel and

translates the objects by keeping track of object names by the Hashtable. It also flushes

the translated parameters to an output stream at regular intervals.

If the replay button is clicked it shows up the replay. This enables the viewer to study the

behavior of robots and its interaction with other robots.

The sequence goes on until the user closes the viewer.

 27

Chapter 3: Evaluation

The CRS3D Viewer was evaluated with various test cases. This section illustrates the

various tests performed. The CRS3D Viewer had the following requirements:

1. To be able to draw the environment generated by the Environment Model

Building tool.

2. To be able to show the changes in the environment on a real time basis.

3. To be able to provide the user with zoom-in and zoom-out to get the

desired view.

4. The user should also be able to view the environment from different

camera angles.

5. The viewer also should be capable enough of running on any platform,

with minimal memory usage. The viewer should also be designed to run

on multiple machines at the same time.

The CRS3D Viewer was primarily developed in Virtual Reality Modeling Language

(VRML). The following table shows the comparison of VRML and Java 3D.

Table 2: Comparison of VRML vs. Java 3D

Properties Virtual Reality Modeling

Language

Java 3D

Platform Independence No Yes

Support for Java API’s Yes, but minimal Yes, Complete support

Support for Socket

Communication

Interfaces

No Yes

Support for Microsoft

Virtual Machine

Yes No

Camera Angles Yes Yes

Zoom in and Zoom out Yes Yes

Memory Usage Very Minimal High

 28

Taking into consideration the following comparisons the CRS3D viewer was completely

developed using Java 3D and Java API’s. Java 3D is a fully featured 3D graphics API. It

employs a scene-graph programming model in which the application program describes a

scene; Java 3D then manages the display of that scene. Java 3D’s scene graph allows the

program to focus on what happens to the object in the scene while the Java 3D runtime

invokes the rendering engines to draw the scene and display as fast as possible.

This feature is used in the CRS3D viewer to enable translation of robots instantaneously

once the parameters are received from the Environment Control Panel.

Java 3D includes the most essential features found in the other popular 3D graphic API’s

such as OpenGL and Direct3D. Java 3D falls somewhere in the middle, with capabilities

more like those of rendering API’s than file formats. It offers a high-level, scene graph

programming model that shields programmers from low-level rendering details and

permits low-level rendering control like OpenGL and Direct3D which Viewer does not

provide.

Java 3D allows scalable performance. In recent years, the power of graphics hardware

has been growing faster than CPU power. Java 3D is structures based on the scene graph

model which allows much of the work to be offloaded to the graphics hardware. As a

result, developers don’t need to recompile the Java 3D programs to keep up with the

advances in the hardware.

Java3D inherently supports multithreading. Threads also known as lightweight processes

allows a program to be divided into an umber of smaller tasks that can be executed

independent of one another. When run on multiprocessor system, the threads can be

concurrently executed on different processors. The result is a performance increase as

program execution is spread across CPU’s.

Java 3D is optimizes for bother the single CPU and multiprocessor configurations. When

run on a single CPU, Java 3D partitions its work to maximize performance and

 29

interactivity. On multiprocessor systems, Java 3D changes its partition to take advantage

of the extra processors. The speed up is dramatic on systems with multiples displays

where Java 3D can partition the rendering to make each processors render to particular

display.

Java 3D supports objects called behaviors that allow program logic to be embedded into a

scene graph. This allows objects n the virtual world to make dramatic changes to the

scene graph instantaneously.

Java 3D aloes allows developers to compress scene geometry. Java 3D supports binary

compression of specific object geometry through the API.. Java 3D’s binary Compression

format is typically used to reduce the bandwidth required to transmit geometric data over

a network.

The advantages of binary compression, platform independence, distributed rendering,

multithreading makes development of CRS3D viewer using Java 3D very effective.

The Viewing platform of Java 3D enables the viewer to see the environment from

different angles.

• Test Case 1:

Table 3: Test Case 1

Environment Model Building Tool sample

Complex-3r.xml

Number of Objects 32 Box + 3 Robots

Zoom- in and Zoom –out Worked perfectly

Camera Angles HardCoded

Platform Independence Yes

Multiple Viewers Yes

Real Time change on Viewer Yes, no time lapse

 30

• Test Case 2:

Table 4: Test Case 2

Environment Model Building Tool sample

Proto-two-robots.xml

Number of Objects 4 box + 2 Robots

Zoom- in and Zoom –out Worked perfectly

Camera Angles HardCoded

Platform Independence Yes

Multiple Viewers Yes

Real Time change on Viewer Yes, no time lapse

 31

Chapter 4: Conclusion

The Cooperative Robotics Simulator was designed to study the behavior of robots by

performing simulations on one more heterogeneous types of robots all working with a

single environment.

The CRS3D Viewer is completely designed using Java 3D. Java 3D has the following

advantages: platform independent support, Graphics acceleration capabilities,

Representation of composite objects and shapes, Database Interaction Support.

Also Java 3D is built on a lower level interfaces and leverages and the hardware

acceleration provided by DirectX, QuickDraw3D or OpenGL. Java 3D has superior

rendering, texturing, 3D geometry and many other programmable features.

The CRS3D Viewer features all the advantages provided by Java 3D and Java. The

viewer is platform independent and can be run on multiple machines to view the

simulation due to the multithreading capabilities provided by Java 3D.

The scene graph used in Java 3D enables effective rendering of images during run-time.

This feature has helped represent the translation of robots in the environment effectively.

All the requirements of the CRS3D Viewer have been successfully met. The

requirements completely satisfied by the viewer include:

Figure 13: CRS3D Viewer, Requirements

 32

Chapter 5: Future Work

5.1 Mouse Behaviors in Java 3D

Java 3D [4] provides behavior classes to control transformations using the mouse. The

subclasses of MouseBehavior change a transform for TransformGroup when the mouse is

moved when a button is pressed. The subclasses are MouseRotate, MouseTranslate and

MouseZoom.

5.2 Picking in Java 3D

Picking is sort of the opposite of viewing. Picking is the process of selecting shapes in the

3D virtual world using the 2D coordinates of the mouse on the Canvas3D. The

PickCanvas class is used to turn the mouse location into an area of space or PickShape,

the projects from the viewer through the mouse location into the virtual world. Pick

Canvas extends the more general PickTool that defines Picking operations.

Picking behavior could be used to specify the details about the object being picked.

5.3 Collision Detection using Java 3D

Collisions are considered a form of behavior, so the first thing that the runtime does is

organize the data in spatial groups. The viewpoint has an activation region surrounding it,

and each of the objects marked as collidable have a region surrounding them. If these two

 33

areas intersect then these are added to the list of active areas to watch for.

Figure 14: Collision detection in Java 3D

The basic collision areas and the user views. The grey areas are removed from the

collision detection because they do not intersect with the user's view area

To do this first part relatively quickly, J3D uses a spatially organized tree (which is

apparently used for all geometric operations - behavior culling, rendering culling etc).

The efficiency is dependent on how well balanced this tree is i.e. how well objects are

distributed around the virtual world relative to the user's position and how many child

items are there.

5.4 Representing Composite Objects and Sounds

The present version of the Viewer is capable of representing both composite objects and

simple objects. However, wrapper classes could be defined to draw composite shapes like

robots and rooms using the present viewer.

Java 3D could also be used to represent elevations over the floor.

 34

Figure 15: Complex Spline

Writing Java 3D code to create complex 3D worlds from scratch is certainly nontrivial.

Realizing that such limits aren't good for the success of Java 3D, Sun has made it easy to

import from standard 3D file formats into Java 3D using loaders.

A loader knows how to read content from a standard 3D file format -- say, for instance,

Wavefront's Object file format (OBJ) -- then construct a Java 3D scene from it. There are

a variety of loaders available on the Web, including several provided by Sun within the

Java 3D release itself. All of them are documented at the Java 3D Loaders archive .As of

this writing, 17 publicly known Java 3D file loaders are currently available, supporting

such common formats as AutoCAD's Drawing Interchange File (DXF), LightWave's

Scene Format (LWS) and Object Format (LWO), 3D-Studio's 3DS, and application-

specific formats like the Protein Data Bank's PDB. The world is full of free or

commercial archives of 3D content. Complex 3D shapes can be created using these file

formats.

Java 3D also supports sound and multimedia content. It is possible to integrate the sound

features of the robot using Java 3D’s sound API.

 35

References

[1] Aaron E. Walsh, Dough Gehringer,” Java 3D API Jump Start”, Sun Microsystems

Press, 1999,242 pages.

[2] Author unknown,”Sun Java API Manual”, Copyright by Sun Microsystems

 , ” http://java.sun.com/products/java-media/3D”, 198 pages.

[3] Henry Sowizral, Kevin Rushforth, Michael Deering, “The Java 3D(TM) API

Specification”, Sun Microsystems Press, 2000, 292 pages.

 36

Appendix

User Manual

Figure 16: Environment Control Panel (SnapShot)

The CRS 3D viewer can be started as follows:

1. Start the Environment Control Panel

2. File->Open->Select an XML file (XML file is the one created by the Model

Building tool).

3. Click Run Loaded File

4. Start the Java 3D viewer and robot simulator.

Step 2: Starting
the environment

 37

Figure 17: CRS3D Viewer(SnapShot)

 38

Figure 18: CRS3D Viewer(SnapShot)

 39

Figure 19: CRS3D Viewer(SnapShot)

 40

Figure 20: CRS3D Viewer(SnapShot)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

